Deep Generative Models for Proton Zero Degree
Calorimeter Simulations in ALICE, CERN

Patryk Bedkowski', Jan Dubinski'?, Kamil Deja', Przemystaw Rokita'

YWarsaw University of Technology
2IDEAS NCBR

Abstract.

Simulating detector responses is a crucial part of understanding the
inner-workings of particle collisions in the Large Hadron Collider at CERN.
The current reliance on statistical Monte-Carlo simulations strains CERN’s
computational grid, underscoring the urgency for more efficient alternatives.
Addressing these challenges, recent proposals advocate for generative ma-
chine learning methods. In this study, we present an innovative deep learn-
ing simulation approach tailored for the proton Zero Degree Calorimeter
in the ALICE experiment. Leveraging a Generative Adversarial Network
model with Selective Diversity Increase loss, we directly simulate calorime-
ter responses. To enhance its capabilities in modeling a broad range of
calorimeter response intensities, we expand the SDI-GAN architecture with
additional regularization. Moreover, to improve the spatial fidelity of the
generated data, we introduce an auxiliary regressor network. Our method
offers a significant speedup when comparing to the traditional Monte-Carlo-
based approaches.
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1. Introduction

ALICE (A Large Ion Collider Experiment) is one of the four major detec-
tors located at the Large Hadron Collider at CERN. One of its main goals is to
replicate and study the intense conditions that existed in the early universe shortly
after the Big Bang. Apart from gathering real data from the experiment, in or-
der to understand the properties and events of particle collisions scientists have to
perform complex simulations that compared with experimental data can validate
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hypotheses. Such simulations are computationally extremely expensive. Existing
approaches utilize statistical Monte-Carlo methods to model the physical interac-
tions between particles. While these methods yield high-fidelity outcomes, they
are also associated with high computational demands. In 2023, over 540’000 CPU
devices [[1]] were engaged in the computations of ALICE experiments, marking a
demand for developing more efficient simulation methods.

One of the most computationally expensive part of the process is the simula-
tion of Calorimeter. Therefore, in this study, we focus on machine learning models
to simulate data from the Proton Zero Degree Calorimeter (ZDC) of the ALICE
experiment at CERN. We implement a deep convolutional Generative Adversarial
Network (GAN) [2] as a baseline model and adapt the SDI-GAN model [3] which
incorporates a regularization technique aimed at increasing the diversity of gener-
ated samples. Then, we extend the model by a simple, yet powerful regulariza-
tion method focused on minimizing the difference in intensities between real and
generated calorimeter responses, which improves the quality of the simulations.
Finally, we introduce an auxiliary regressor which increases the model capabilities
to learn accurate spatial features of the simulation data. We can summarise the
contributions of this work as follows:

o We develop the first generative simulation method for the proton Zero De-
gree Calorimeter in the ALICE experiment at CERN.

o We evaluate the baseline GAN and SDI-GAN in our simulation task.

o We extend the SDI-GAN model by an intensity regularization loss and spa-
tial auxiliary regressor, achieving increased simulation quality.

2. Related work

Throughout recent years, the use of Generative Al for various CERN simula-
tions has shown the versatility of these methods [4, 5 3, 6]. Authors of [6] em-
ploy generative machine learning algorithms for the task of simulating a Neutron
ZDC calorimeter device. They propose a solution that utilizes generative models,
specifically focusing on the performance of variational autoencoders and genera-
tive adversarial networks. By expanding the GAN architecture with an additional
regularization, the authors significantly increase the simulation speed by two or-
ders of magnitude while maintaining the high fidelity of the simulation.

To increase the diversity of the simulations present in the dataset, in [3] au-
thors present a model dubbed SDI-GAN which offers significant improvements to
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the simulations by enforcing sample diversity among subsets of conditional data
without affecting samples that exhibit consistent responses.

Finally, in order to improve how the generator learns the geometric properties
of the data, in [[7, 8] authors employ a regressor to accurately align the shower’s
center in calorimeter responses. In this work, we introduce a similar approach in
the ZDC Calorimeter in ALICE.

3. Method

We select a Deep Convolutional Generative Adversarial Network [2]] as our
experimental model, consisting of a generator G(z) and a discriminator D(x). The
generator creates image x from random noise z, and the discriminator differentiates
between real and generated images. Both networks are conditioned on particle data
and trained adversarially. Post-training, the generator is used to synthesize new
calorimeter responses to particle collisions. During training, given conditional
input ¢ and k-dimensional latent code z ~ N (0, 1), generator G(z, ¢) produces an
output image X = G(z, ¢).

Lagv(G, D) = Ex-x c~cllog D(x, €)1 + Ec~cz-n0,nllog(l = D(G(c,2),c)] (1)

Figure 1. Architecture of the generator in used convolutional GAN across all tests.

3.1. Auxiliary regressor

One of the main properties of calorimeter response is the localisation of the
center of the shower — area where the pixel values are the highest. Therefore, to
improve the GAN’s learning of geometric data properties, we introduce an auxil-
iary regressor that trains alongside the main network to identify the 2D coordinates
of the center of the collision. In preprocessing, we calculate these coordinates for
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all training samples, using them as targets for training. The auxiliary loss, mea-
sured by the mean squared error between the predicted (£;, ;) and actual coordi-
nates (k;, [;) of the highest-value pixel of the image x;, is added to the generator’s
loss to refine its geometric accuracy. Strength is controlled by A, parameter.

N
Lauy = % Z‘ |(&: = k)? + (I; - 1)?] @)

3.2. Diversity regularization

Authors of SDI-GAN propose a regularization which seeks to minimize the
ratio between the L1 distance of two images d; generated from two distinct latent
codes z1, zp under the same conditioning vector ¢ and the L1 distance between
the latent codes themselves d,. The measure of diversity is based on the variance
in the original dataset. Thus, as a preprocessing for each unique conditioning
value c, they calculate the variance of pixel values among samples. Later obtained
values of all sample diversity are normalized to [0, 1] by dividing by the length of
dataset. This diversity measure is then multiplied with the regularization term A ;,,
adjusting its influence on training objectives.

3
1X] d,(21,22) )

where i and j are the pixel coordinates, ¢ is the index of sample x € ¥ and y;; is a
mean value for a pixel ij.
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3.3. Intensity regularization

SDI-GAN performs well on filtered data but struggles with varying intensity
levels of Cherenkov light particles across distributions. To address this, we in-
troduce a regularization using intensity measure f;, from the original dataset. In
preprocessing, for each conditional vector ¢, we calculate this intensity measure as
the pixel sum of the corresponding image x from Y fin(x) = X; j xij, Where i, j are
coordinates of an image x. The intensity between the generated image X and the
original sample x corresponding to c is calculated using the mean absolute error
(MAE). This loss is then multiplied by the constant 4;,, to adjust its strength.

Lin = |fin(xe) = fin(X)] “4)
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3.4. Final training objective

The final training loss for our approach is a combination of the basic GAN
training loss with the proposed modifications, and can be summarised as follows:

L(G, D) = Ladv(Ga D) + /ldideiv(G) + /linLin(G) + AauxLaux

4. Experiments

The Zero Degree Calorimeter (ZDC)
includes a Proton (ZP) device for
recording energy from non-interacting
nuclei in collisions. It uses silica fibers
to detect Cherenkov light, converting
it into 2D images with a resolution of
56 by 30 pixels. The visualisation of
the original detector responses is pre-
sented in Fig. [2] (top row). Each sim-
ulation example is therefore an im-
age coming from a ZP device which
is referred to as a response of the ex-
periment associated with a vector of
variables, referred to as conditional
data. Conditional data compromises
of 9 variables: energy, mass, charge,
three spatial position coordinates, and
three momentum coordinates.

True ZP

SDI-GAN + reg

GAN
SDI-GAN

SDI-GAN + reg + aux

*
I

®)

Figure 2. Example of simulated responses

from different methods.

Table 1. Comparison of mean WS metric across five runs.

Model WS Distance | Std Dev
GAN 2.4752 1.6843
SDI-GAN 2.3571 1.6000
SDI-GAN + intensity reg. 2.2916 1.8210
SDI-GAN + intensity reg. + aux. reg. 2.0777 1.6381
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The dataset employed in this experiment constitutes almost 350 thousand sam-
ples, with the validation method incorporating an 80:20 train-test split ratio. Our
evaluation methodology is founded on the analysis of five distinct channels out-
lined in the calorimeter’s specifications [9]. We employ the standard 1st Wasser-
stein distance metric [10] to assess the fidelity of the simulations across all chan-
nels. As shown in Tab. [I} our modifications positively influence the quality of
generations as measured by the Wasserstein distance.

To visualise the differences between different methods, we plot responses to
several different parameters in Fig.[2] The basic GAN produces images that are not
visually aligned with the actual data. Samples generated by SDI-GAN struggle to
fit the positions of real samples. Auxiliary regressor better aligns the positions of
centers of particle showers. In Fig. ] we present the visual results for channel 4
and 35, as they contain most of information.

8 Channel 4 Channel 5
E‘ B true m true
& 10 mmm generated s generated
GAN 5
5]
£ IIHWHI
E uII\H i, .
=z 1000 1200 1200 1400
Channel value Channel value
13
1
g' m true m true
& 1o s generated s generated
SDI-GAN 5
5.
£ H“IHHM H HWMN“MMn
z 1000 1200 1400
Channel value Channel value
13
Q2
g— [ true - true
SDI-GAN g B generated B generated
+ intensity reg. o
o
Q
E" HMWMI||m\HmH "
z 1200 1200 1400
Channel value Channel value
%3
D
g— [ true am true
) SD_I'GAN RS B generated B generated
+ intensity reg. 5
+ aux. reg. E
£
=3
z

”m‘\“lﬂdlu \|H I \|| I \||HH\ I

Channel value Channel value

Figure 3. Histograms of true and generated distributions of channel values. The GAN and
SDI-GAN model have visible problems with underproducing high-energy responses. The
implementation of additional regularization, and auxiliary regressor positively influence
better alignment to true distribution, but tends to oversample the high-energy responses.
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5. Conclusions

In this study, we applied and extended generative machine learning models to
simulate the intricate dynamics of the Proton Zero Degree Calorimeter in the AL-
ICE experiment at CERN. By establishing GAN as a baseline model we tested its
performance in comparison to the SDI-GAN. Furthermore, we tailored SDI-GAN
to the unique demands of High Energy Physics experiments, by adding additional
regularization on the sum of pixel intensities which proved to increase the fidelity
of the simulations. Further incorporation of auxiliary regressor proved essential to
securing the lowest WS results.

Appendix: training details

Fine-tuning was conducted via grid search across logarithmically spaced val-
ues: Agiy € {1072,1071,10%), 25, € {1077,1078,1072, 10710, 10711}, and Ay, €
{107*,1073,1072}. Model configurations were assessed for the lowest WS over
five runs, with the best performance yielded by A4, = 107!, 4, = 10719, and
Aaur = 1073, The rest of the parameters were constant for all tests.
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